
ORNL/TM-2009/100

ADIOS 1.5.0 Developer's Manual

June 2013

1

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S.

Department of Energy (DOE) Information Bridge:

Web site:http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the

public from the following source:

National Technical Information Service

5285 Port Royal Road

Spring�eld, VA 22161

Telephone:703-605-6000 (1-800-553-6847)

TDD:703-487-4639

Fax:703-605-6900

E-mail:info@ntis.fedworld.gov

Web site:http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology

Data Exchange (ETDE) representatives, and International Nuclear Information

System (INIS) representatives from the following source:

O�ce of Scienti�c and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone:865-576-8401

Fax:865-576-5728

E-mail:reports@adonis.osti.gov

Web site:http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States government nor any

agency thereof, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any speci�c commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the

United States Government or any agency thereof. The views and opinions of

authors expressed herein do not necessarily state or re�ect those of the United

States Government or any agency thereof.

2

ORNL/TM-2009/100

ADIOS 1.5.0 DEVELOPER'S MANUAL

Prepared for the
O�ce of Science

U.S. Department of Energy

Authors

N. Podhorszki, Q. Liu, J. Logan, H. Abbasi, J.Y. Choi, S. Klasky

Contributors

J. Lofstead, S. Hodson, F. Zheng, M. Wolf, T. Kordenbrock, N. Samatova, J.Q. Mu, J. Dayal, Y. Tian

June 2013

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6070
managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

3

Contents

1 Introduction 7

2 BP File Format 8
2.1 Introduction . 8
2.2 Footer . 8

2.2.1 Version . 9
2.2.2 O�sets of indices . 9
2.2.3 Indices . 9

2.3 Process Groups . 11
2.3.1 PG header . 11
2.3.2 Vars list . 12
2.3.3 Attributes list . 12

3 Developer Manual 13
3.1 Create New Transport Methods . 13

3.1.1 Add the new method macros in adios_transport_hooks.h 13
3.1.2 Create adios_abc.c . 14
3.1.3 A walk-through example . 14

3.2 Pro�ling the Application and ADIOS . 19
3.2.1 Use pro�ling API in source code . 20
3.2.2 Use wrapper library . 22

4 Appendix 24

4

List of Figures

2.1 BP �le structure . 8
2.2 Group index table . 10
2.3 Variables index table . 10
2.4 Process group structure . 11
2.5 Attribute entry structure . 12

5

Abbreviations

ADIOS Adaptive Input/Output System

API Application Program Interface

DART Decoupled and Asynchronous Remote Transfers

GTC Gyrokinetic Turbulence Code

HPC High-Performance Computing

I/O Input/Output

MDS Metadata Server

MPI Message Passing Interface

NCCS National Center for Computational Sciences

ORNL Oak Ridge National Laboratory

OS Operating System

PG Process Group

POSIX Portable Operating System Interface

RDMA Remote Direct Memory Access

XML Extensible Markup Language

Acknowledgments

This project is sponsored by ORNL, Georgia Tech, The Scienti�c Data Management Center (SDM) at
Lawrence Berkeley National Laboratory, and the U.S. Department of Defense.

6

Chapter 1

Introduction

This document contains information about how to develop new transport methods for ADIOS and various
information not directly interesting to users.

7

Chapter 2

BP File Format

2.1 Introduction

This chapter describes the �le structure of BP, which is the ADIOS native binary �le format, to aid in
understanding ADIOS performance issues and how �les convert from BP �les to other scienti�c �le formats,
such as netCDF and HDF5.

To avoid the �le size limitation of 2 gigabytes by using a signed 32-bit o�set within its internal structure,
BP format uses an unsigned 64-bit datatype as the �le o�set. Therefore, it is possible to write BP �les that
exceed 2 gigabytes on platforms that have large �le support.

By adapting ADIOS read routines based on the endianness indication in the �le footer, BP �les can be
easily portable across di�erent machines (e.g., between the Cray-XT4 and BlueGene).

To aid in data selection, we have a low-overhead concept of data characteristics to provide an e�cient,
inexpensive set of attributes that can be used to identify data sets without analyzing large data content.

As shown in Figure 2.1, the BP format comprises a series of process groups and the �le footer. The
remainder of this chapter describes each component in detail and helps the user to better understand (1)
why BP is a self -describing and metadata-rich �le format and (2) why it can achieve high I/O performance
on di�erent machine infrastructures.

Figure 2.1: BP �le structure

2.2 Footer

One known limitation of the NetCDF format is that the �le contents are stored in a header that is exactly
big enough for the information provided at �le creation. Any changes to the length of that data will require
moving data. To avoid this cost, we choose to employ a foot index instead. We place our version identi�er

8

and the o�set to the beginning of the index as the last few bytes of our �le, making it simple to �nd the
index information and to add new and di�erent data to our �les without a�ecting any data already written.

2.2.1 Version

We reserve 4 bytes for the �le version, in which the highest bit indicates endianness. Because ADIOS uses a
�xed-size type for data, there is no need to store type size information in the footer.

2.2.2 O�sets of indices

In BP format, we store three 8-byte �le o�sets right before the version word, which allows users or developers
to quickly seek any of the index tables for process groups, variables, or attributes.

2.2.3 Indices

2.2.3.1 Characteristics

Before we dive into the structures of the three index tables mentioned earlier, let's �rst take a look what
characteristic means in terms of BP �le format. To be able to make a summary inspection of the data to
determine whether it contains the feature of greatest interest, we developed the idea of data characteris-
tics. The idea of data characteristics is to collect some simple statistical and/or analytical data during the
output operation or later for use in identifying the desired data sets. Simple statistics like array minimum
and maximum values can be collected without extra overhead as part of the I/O operation. Other more
complex analytical measures like standard deviations or specialized measures particular to the science being
performance by require more processing. As part of our BP format, we store these values not only as part of
data payload, but also in our index.

2.2.3.2 PG Index table

As shown in Figure 2.2, the process group (PG) index table encompasses the count and the total length of
all the PGs as the �rst two entries. The rest of the tables contain a set of information for each PG, which
contains the group name information, process ID, and time index. The Process ID speci�es which process a
group is written by. That process will be the rank value in the communicator if the MPI method is used.
Most importantly, there is a �le-o�set entry for each PG, allowing a fast skip of the �le in the unit of the
process group.

2.2.3.3 Variables index table

The variables index table is composed of the total count of variables in the BP �le, the size of variables index
table, and a list of variable records. Each record contains the size of the record and the basic metadata to
describe the variable. As shown in Figure 2.3, the metadata include the name of the variable, the name of the
group the variable is associated with, the data type of the variable, and a series of characteristic features. The
structure of each characteristic entry contains an o�set value, which is addressed to the certain occurrence
of the variable in the BP �le. For instance, if n processes write out the variable �d� per time step, and
m iterations have been completed during the whole simulation, then the variable will be written (m × n)
times in the BP �le that is produced. Accordingly, there will be the same number of elements in the list of
characteristics. In this way, we can quickly retrieve the single dataset for all time steps or any other selection
of time steps. This �exibility and e�ciency also apply to a scenario in which a portion of records needs to
be collected from a certain group of processes.

2.2.3.4 Attributes index table

Since an attribute can be considered to be a special type of variable, its index table in BP format is organized
in the same way as a variables index table and therefore supports the same types of features mentioned in
the previous sections.

9

Figure 2.2: Group index table

Figure 2.3: Variables index table

10

2.3 Process Groups

One of the major concepts in BP format is what is called �process group� or PG. The BP �le format
encompasses a series of PG entries and the BP �le footer. Each process group is the entire self-contained
output from a single process and is written out independently into a contiguous disk space. In that way, we
can enhance parallelism and reduce coordination among processes in the same communication group. The
data diagram in Figure 2.4 illustrates the detailed content in each PG.

Figure 2.4: Process group structure

2.3.1 PG header

2.3.1.1 Unlimited dimension

BP format allows users to de�ne an unlimited dimension, which will be speci�ed as the time-index in the
XML �le. Users can de�ne variables having a dimension with unde�ned length, for which the variable can
grow along that dimension. PG is a self-contained, independent data structure; the dataset in the local
space per each time step is not reconstructed at the writing operations across the processes or at time
steps. Theoretically, PGs can be appended to in�nity; they can be added one after another no matter how
many processes or time steps take place during the simulation. Thus ADIOS is able to achieve high I/O
performance.

2.3.1.2 Transport methods

One of the advantages of organizing output in terms of groups is to categorize all the variables based on
their I/O patterns and logical relationships. It provides �exibility for each group to choose the optimized
transport method according to the simulation environment and underlying hardware con�guration or the

11

transport methods used for a performance study without even changing the source code. In PG header
structure, each entry in the method list has a method ID and method parameters, such as system-tuning
parameters or underneath driver selection.

2.3.2 Vars list

2.3.2.1 Var header

Dimensions structure. Internal to bp is su�cient information to recreate any global structure and to place
the local data into the structure. In the case of a global array, each process writes the size of the global
array dimensions, speci�es the local o�sets into each, and then writes the local data, noting the size in each
dimension. On conversion to another format, such as HDF5, this information is used to create hyperslabs
for writing the data into the single, contiguous space. Otherwise, it is just read back in and used to note
where the data came from. In this way, we can enhance parallelism and reduce coordination. All of our
parallel writes occur independently unless the underlying transport speci�cally requires collective operations.
Even in those cases, the collective calls are only for a full bu�er write (assuming the transport was written
appropriately) unless there is insu�cient bu�er space.

As shown in Figure 19, the dimension structure contains a time index �ag, which indicates whether this
variable has an unlimited time dimension. Var_id is used to retrieve the dimension value if the dimension is
de�ned as variable in the XML �le; otherwise, the rank value is taken as the array dimension.

2.3.2.2 Payload

Basic statistical characteristics give users the advantage for quick data inspection and analysis. In Figure 19,
redundant information about characteristics is stored along with variable payload so that if the characteristics
part in the �le footer gets corrupted, it can still be recovered quickly. Currently, only simple statistical traits
are saved in the �le, but the characteristics structure will be easily expanded or modi�ed according to the
requirements of scienti�c applications or the analysis tools.

2.3.3 Attributes list

The layout of the attributes list (see Figure 2.5) is very similar to that of the variables. However, instead
of containing dimensional structures and physical data load, the attribute header has an is_var �ag, which
indicates either that the value of the attribute is referenced from a variable by looking up the var_id in the
same group or that it is a static value de�ned in the XML �le.

Figure 2.5: Attribute entry structure

12

Chapter 3

Developer Manual

3.1 Create New Transport Methods

One of ADIOS's important features is the componentization of transport methods. Users can switch among
the typical methods that we support or even create their own methods, which can be easily plugged into our
library. The following sections provide the procedures for adding the new transport method called �abc� into
the ADIOS library. In this version of ADIOS, all the source �les are located in /trunk/src/; the core �les in
/trunk/src/core/, the write method in /trunk/src/write and the read method in /trunk/src/read.

3.1.1 Add the new method macros in adios_transport_hooks.h

The �rst �le users need to examine is adios_transport_hooks.h, which basically de�nes all the transport
methods and interface functions between detailed transport implementation and user APIs. In the �le, we
�rst �nd the line that de�nes the enumeration type Adios_IO_methods_datatype add the declaration of
method ID ADIOS_METHOD_ABC, and, because we add a new method, update total number of transport
methods ADIOS_METHOD_COUNT from 9 to 10.

1. enum Adios_IO_methods datatype

enum ADIOS_IO_METHOD {

ADIOS_METHOD_UNKNOWN = -2,

ADIOS_METHOD_NULL = -1,

ADIOS_METHOD_MPI = 0,

...

ADIOS_METHOD_PROVENANCE = 8,

ADIOS_METHOD_ABC = 9,

ADIOS_METHOD_COUNT = 10

};

Listing 3.1: Add a new write method, step 1

2. Next, we need to declare the transport APIs for method �abc,� including init/�nalize, open/close,
should_bu�er, and read/write. Similar to the other methods, we need to add

FORWARD_DECLARE (abc)

3. Then, we add the mapping of the string name �abc� of the new transport method to the method ID -
ADIOS_METHOD_ABC, which has been already de�ned in enumeration type Adios_IO_methods_datatype.
As the last parameter, �1� here means the method requires communications, or �0� if not.

MATCH_STRING_TO_METHOD ("abc", ADIOS_METHOD_ABC , 1)

4. Lastly, we add the mapping of the string name needed in the initialization functions to the method
ID, which will be used by adios_transport_struct variables de�ned in adios_internals.h.

13

ASSIGN_FNS (abc , ADIOS_METHOD_ABC)

3.1.2 Create adios_abc.c

In this section, we demonstrate how to implement di�erent transport APIs for method �abc.� In adios_abc.c,
we need to implement at least 11 required routines:

1. �adios_abc_init� allocates the method_data �eld in adios_method_struct to the user-de�ned trans-
port data structure, such as adios_abc_data_struct, and initializes this data structure. Before the
function returns, the initialization status can be set by statement �adios_abc_initialized = 1.�

2. �adios_abc_open� opens a �le if there is only one processor writing to the �le. Otherwise, this function
does nothing; instead, we use adios_abc_should_bu�er to coordinate the �le open operations.

3. �adios_abc_should_bu�er,� called by the �common_adios_group_size� function in adios.c, needs to
include coordination of open operations if multiple processes are writing to the same �le.

4. �adios_abc_write�, in the case of no bu�ering or over�ow, writes data directly to disk. Otherwise, it
veri�es whether the internally recorded memory pointer is consistent with the vector variable's address
passed in the function parameter and frees that block of memory if it is not needed any more.

5. �adios_abc_read� associates the internal data structure's address to the variable speci�ed in the func-
tion parameter.

6. �adios_abc_close� simply closes the �le if no bu�ering scheme is used. However, in general, this function
performs most of the actual disk writing/reading the bu�ers to/from the �le by one or more processors
in the same communicator domain and then close the �le.

7. �adios_abc_�nalize� resets the initialization status back to 0 if it has been set to 1 by adios_abc_init.

If you are developing asynchronous methods, the following functions need to be implemented as well;
otherwise you can leave them as empty implementation.

8. adios_abc_get_write_bu�er,

9. �adios_abc_end_iteration� is a tick counter for the I/O routines to time how fast they are emptying
the bu�ers.

10. �adios_abc_start_calculation� indicates that it is now an ideal time to do bulk data transfers because
the code will not be performing I/O for a while.

11. �adios_abc_stop_calculation� indicates that bulk data transfers should cease because the code is about
to start communicating with other nodes.

The following is One of the most important things that needs to be noted:
fd->shared_bu�er = adios_�ag_no,
which means that the methods do not need a bu�ering scheme, such as PHDF5, and that data write out

occurs immediately once adios_write returns.
If fd->shared_bu�er = adios_�ag_yes, the users can employ the self-de�ned bu�ering scheme to improve

I/O performance.

3.1.3 A walk-through example

Now let's look at an example of adding an unbu�ered POSIX method to ADIOS. According to the steps
described above, we �rst open the header �le ��adios_transport_hooks.h,� and add the following statements:

enum ADIOS_IO_METHOD {

ADIOS_METHOD_UNKNOWN = -2,

ADIOS_METHOD_NULL = -1,

ADIOS_METHOD_MPI = 0,

14

...

ADIOS_METHOD_PROVENANCE = 8,

// method ID for binary transport method

ADIOS_METHOD_POSIX_ASCII_NB = 9,

// total method number

ADIOS_METHOD_COUNT = 10

};

FORWARD_DECLARE (posix_ascii_nb);

MATCH_STRING_TO_METHOD ("posix_ascii_nb", ADIOS_METHOD_POSIX_ASCII_NB , 0)

ASSIGN_FNS (binary , ADIOS_METHOD_POSIX_ASCII_NB)

Listing 3.2: Example: add unbu�ered POSIX method, step 1

Next, we must create adios_posix_ascii_nb,c, which de�nes all the required routines listed in Sect.
12.1.2 The blue highlights below mark out the data structures and required functions that developers need
to implement in the source code.

static int adios_posix_ascii_nb_initialized = 0;

struct adios_POSIX_ASCII_UNBUFFERED_data_struct

{

FILE *f;

uint64_t file_size;

};

void adios_posix_ascii_nb_init (const char *parameters ,

struct adios_method_struct * method)

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * md;

if (! adios_posix_ascii_nb_initialized)

{

adios_posix_ascii_nb_initialized = 1;

}

method ->method_data = malloc (

sizeof(struct adios_POSIX_ASCII_UNBUFFERED_data_struct));

md = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)

method ->method_data;

md->f = 0;

md->file_size = 0;

}

int adios_posix_ascii_nb _open (struct adios_file_struct * fd ,

struct adios_method_struct * method)

{

char * name;

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;

struct stat s;

p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)

method ->method_data;

name = malloc (strlen (method ->base_path) + strlen (fd ->name) + 1);

sprintf (name , "\%s\%s", method ->base_path , fd->name);

15

if (stat (name , \&s) == 0)

p->file_size = s.st_size;

switch (fd ->mode)

{

case adios_mode_read:

{

p->f = fopen (name , "r");

if (p->f <= 0)

{

fprintf (stderr , "ADIOS POSIX ASCII UNBUFFERED: "

"file not found: \%s\n", fd->name);

free (name);

return 0;

}

break;

}

case adios_mode_write:

{

p->f = fopen (name , "w");

if (p->f <= 0)

{

fprintf (stderr , "adios_posix_ascii_nb_open "

"failed for base_path %s, name %s\n",

method ->base_path , fd->name

);

free (name);

return 0;

}

break;

}

case adios_mode_append:

{

int old_file = 1;

p->f = fopen (name , "a");

if (p->f <= 0)

{

fprintf (stderr , "adios_posix_ascii_nb_open"

" failed for base_path \%s, name \%s\n"

,method ->base_path , fd->name

);

free (name);

return 0;

}

break;

}

default:

{

fprintf (stderr , "Unknown file mode: \%d\n", fd->mode);

free (name);

return 0;

}

16

}

free (name);

return 0;

}

enum ADIOS_FLAG adios_posix_ascii_nb_should_buffer(

struct adios_file_struct * fd ,

struct adios_method_struct * method ,

void * comm)

{

//in this case , we don't use shared_buffer

return adios_flag_no;

}

void adios_posix_ascii_nb_write (struct adios_file_struct * fd ,

struct adios_var_struct * v,

void * data ,

struct adios_method_struct * method)

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;

p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)

method ->method_data;

if (!v->dimensions) {

switch (v->type)

{

case adios_byte:

case adios_unsigned_byte:

fprintf (p->f,"\%c\n", *((char *)data));

break;

case adios_short:

case adios_integer:

case adios_unsigned_short:

case adios_unsigned_integer:

fprintf (p->f,"\%d\n", *((int *)data));

break;

case adios_real:

case adios_double:

case adios_long_double:

fprintf (p->f,"\%f\n", *((double *)data));

break;

case adios_string:

fprintf (p->f,"\%s\n", (char *)data);

break;

case adios_complex:

fprintf (p->f,"\%f+\%fi\n",

*((float *)data),*((float *)(data +4)));

break;

case adios_double_complex:

fprintf (p->f,"\%f+\%fi\n",

*((double *)data),*((double *)(data +8)));

break;

default:

break;

}

}

17

else

{

uint64_t j;

int element_size = adios_get_type_size (v->type , v->data);

printf("element_size: \%d\n",element_size);

uint64_t var_size = adios_get_var_size (v, fd ->group , v->data) /

element_size;

switch (v->type)

{

case adios_byte:

case adios_unsigned_byte:

for (j = 0;j < var_size; j++)

fprintf (p->f,"\%c ", *((char *)(data+j)));

printf("\n");

break;

case adios_short:

case adios_integer:

case adios_unsigned_short:

case adios_unsigned_integer:

for (j = 0;j < var_size; j++)

fprintf (p->f,"\%d ", *((int *)(data+element_size*j)));

printf("\n");

break;

case adios_real:

case adios_double:

case adios_long_double:

for (j = 0;j < var_size; j++)

fprintf (p->f,"\%f ", * ((double *)(data+element_size*j)));

printf("\n");

break;

case adios_string:

for (j = 0;j < var_size; j++)

fprintf (p->f,"\%s ", (char *)data);

printf("\n");

break;

case adios_complex:

for (j = 0;j < var_size; j++)

fprintf (p->f, "\%f+\%fi ", *((float *)(data+element_size*j)),

*((float *)(data +4+ element_size*j)));

printf("\n");

break;

case adios_double_complex:

for (j = 0;j < var_size; j++)

fprintf (p->f,"\%f+\%fi ", *((double *)(data+element_size*j)),

*((double *)(data+element_size*j+8)));

printf("\n");

break;

default:

break;

}

}

}

void adios_posix_ascii_nb_get_write_buffer (struct adios_file_struct * fd ,

struct adios_var_struct * v,

18

uint64_t * size ,

void ** buffer ,

struct adios_method_struct * method)

{

*buffer = 0;

}

void adios_posix_ascii_nb_read (struct adios_file_struct * fd ,

struct adios_var_struct * v,

void * buffer ,

uint64_t buffer_size ,

struct adios_method_struct * method)

{

v->data = buffer;

v->data_size = buffer_size;

}

int adios_posix_ascii_nb_close (struct adios_file_struct * fd ,

struct adios_method_struct * method)

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;

p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)

method ->method_data;

if (p->f <= 0)

{

fclose (p->f);

}

p->f = 0;

p->file_size = 0;

}

void adios_posix_ascii_nb_finalize (int mype ,

struct adios_method_struct * method)}

{

if (adios_posix_ascii_nb_initialized)

adios_posix_ascii_nb_initialized = 0;

}

Listing 3.3: Example: add unbu�ered POSIX method, C source of write method

The binary transport method blocks methods for simplicity. Therefore, no special implementation for the
three functions below is necessary and their function bodies can be left empty:

adios_posix_ascii_nb_end_iteration (struct adios_method_struct * method) {}

adios_posix_ascii_nb_start_calculation (struct adios_method_struct * method) {}

adios posix_ascii_nb stop_calculation (struct adios_method_struct * method) {}

Above, we have implemented the POSIX_ASCII_NB transport method. When users specify POSIX_ASCII_NB
method in xml �le, the users' applications will generate ASCII �les by using common ADIOS APIs. However,
in order to achieve better I/O performance, a bu�ering scheme needs to be included into this example.

3.2 Pro�ling the Application and ADIOS

There are two ways to get pro�ling information of ADIOS I/O operations. One way is for the user to explicitly
insert a set of pro�ling API calls around ADIOS API calls in the source code. The other way is to link the
user code with a renamed ADIOS library and an ADIOS API wrapper library.

19

3.2.1 Use pro�ling API in source code

The pro�ling library called libadios_timing.a implements a set of pro�ling API calls. The user can use these
API calls to wrap the ADIOS API calls in the source code to get pro�ling information.

The adios-timing.h header �le contains the declarations of those pro�ling functions.

/*

* initialize profiling

*

* Fortran interface

*/

int init_prof_all_(char *prof_file_name , int prof_file_name_size);

/*

* record open start time for specified group

*

* Fortran interface

*/

void open_start_for_group_ (int64_t *gp_prof_handle , char *group_name ,

int *cycle , int *gp_name_size);

/*

* record open end time for specified group

*

* Fortran interface

*/

void open_end_for_group_(int64_t *gp_prof_handle , int *cycle);

/*

* record write start time for specified group

*

* Fortran interface

*/

void write_start_for_group_(int64_t *gp_prof_handle , int *cycle);

/*

* record write end time for specified group

*

* Fortran interface

*/

void write_end_for_group_(int64_t *gp_prof_handle , int *cycle);

/*

* record close start time for specified group

*

* Fortran interface

*/

void close_start_for_group_(int64_t *gp_prof_handle , int *cycle);

/*

* record close end time for specified group

*

* Fortran interface

*/

void close_end_for_group_(int64_t *gp_prof_handle , int *cycle);

20

/*

* Report timing info for all groups

*

* Fortran interface

*/

int finalize_prof_all_ ();

/*

* record start time of a simulation cycle

*

* Fortran interface

*/

void cycle_start_(int *cycle);

/*

* record end time of a simulation cycle

*

* Fortran interface

*/

void cycle_end_(int *cycle);

An example of using these functions is given below....

...

! initialization ADIOS

CALL adios_init ("config.xml"//char (0))

! initialize profiling library; the parameter specifies the file where

! profiling information is written

CALL init_prof_all("log"//char (0))

...

CALL MPI_Barrier(toroidal_comm , error)

! record start time of open

! group_prof_handle is an OUT parameter holding the handle for the

! group 'output3d.0'

! istep is iteration no.

CALL open_start_for_group(group_prof_handle , "output3d .0"//char(0),istep)

CALL adios_open(adios_handle , "output3d .0"//char(0), "w"//char (0))

! record end time of open

CALL open_end_for_group(group_prof_handle ,istep)

! record start time of write

CALL write_start_for_group(group_prof_handle ,istep)

#include "gwrite_output3d .0.fh"

! record end time of write

CALL write_end_for_group(group_prof_handle ,istep)

! record start time of close

CALL cose_start_for_group(group_prof_handle ,istep)

CALL adios_close(adios_handle ,adios_err)

! record end time of close

21

CALL close_end_for_group(group_prof_handle ,istep)

...

CALL adios_finalize (myid)

! finalize; profiling information are gathered and

! min/max/mean/var are calculated for each IO dump

CALL finalize_prof ()

CALL MPI_FINALIZE(error)

When the code is run, pro�ling information will be saved to the �le �./log� (speci�ed in init_prof_all ()).
Below is an example.

Fri Aug 22 15:42:04 EDT 2008

I/O Timing results

Operations : min max mean var

cycle no 3

io count 0

Open : 0.107671 0.108245 0.108032 0.000124

Open start : 1219434228.866144 1219434230.775268 1219434229.748614 0.588501

Open end : 1219434228.974225 1219434230.883335 1219434229.856646 0.588486

Write : 0.000170 0.000190 0.000179 0.000005

Write start: 1219434228.974226 1219434230.883336 1219434229.856647 0.588486

Write end : 1219434228.974405 1219434230.883514 1219434229.856826 0.588484

Close : 0.001608 0.001743 0.001656 0.000036

Close start: 1219434228.974405 1219434230.883514 1219434229.856826 0.588484

Close end : 1219434228.976040 1219434230.885211 1219434229.858482 0.588489

Total : 0.109484 0.110049 0.109868 0.000137

cycle no 6

io count 1

Open : 0.000007 0.000011 0.000009 0.000001

Open start : 1219434240.098444 1219434242.007951 1219434240.981075 0.588556

Open end : 1219434240.098452 1219434242.007962 1219434240.981083 0.588556

Write : 0.000175 0.000196 0.000180 0.000004

Write start: 1219434240.098452 1219434242.007962 1219434240.981083 0.588557

Write end : 1219434240.098631 1219434242.008158 1219434240.981264 0.588558

Close : 0.000947 0.003603 0.001234 0.000466

Close start: 1219434240.098631 1219434242.008158 1219434240.981264 0.588558

Close end : 1219434240.099665 1219434242.009620 1219434240.982498 0.588447

Total : 0.001132 0.003789 0.001423 0.000466

The script �post_script.sh� extracts �open time�, �write time�, �close time�, and �total time� from the raw
pro�ling results and saves them in separate �les: open, write, close, and total, respectively.

To compile the code, one should link the code with the -ladios_timing -ladios option.

3.2.2 Use wrapper library

Another way to do pro�ling is to link the source code with a renamed ADIOS library and a wrapper library.
The renamed ADIOS library implements �real� ADIOS routines, but all ADIOS public functions are

renamed with a pre�x �P�. For example, adios_open() is renamed as Padios_open(). The routine for parsing
con�g.xml �le is also changed to parse extra �ags in con�g.xml �le to turn pro�ling on or o�.

The wrapper library implements all adios pubic functions (e.g., adios_open, adios_write, adios_close)
within each function. It calls the �real� function (Padios_xxx()) and measure the start and end time of the
function call.

There is an example wrapper library called libadios_pro�ling.a. Developers can implement their own
wrapper library to customize the pro�ling.

To use the wrapper library, the user code should be linked with -ladios_pro�ling -ladios. the wrapper
library should precede the �real� ADIOS library. There is no need to put additional pro�ling API calls in the

22

source code. The user can turn pro�ling on or o� for each ADIOS group by setting a �ag in the con�g.xml
�le.

<adios -group name="restart.model" profiling="yes|no">

...

</adios -group\>

23

Chapter 4

Appendix

24

	Introduction
	BP File Format
	Introduction
	Footer
	Version
	Offsets of indices
	Indices

	Process Groups
	PG header
	Vars list
	Attributes list

	Developer Manual
	Create New Transport Methods
	Add the new method macros in adios_transport_hooks.h
	Create adios_abc.c
	A walk-through example

	Profiling the Application and ADIOS
	Use profiling API in source code
	Use wrapper library

	Appendix

